0
408M50000008027
平成八年自治省令第二十七号
地方財政法第三十三条の三第二項の額の算定に関する省令
地方財政法(昭和二十三年法律第百九号)第三十三条の三第二項の規定に基づき、地方財政法第三十三条の三第二項の額の算定に関する省令を次のように定める。
地方財政法(昭和二十三年法律第百九号)第三十三条の三第二項に規定する地方税法(昭和二十五年法律第二百二十六号)附則第三条の四の規定の適用がないものとした場合における地方公共団体の平成八年度の個人の道府県民税又は市町村民税の所得割の収入見込額から当該地方公共団体の同年度の個人の道府県民税又は市町村民税の所得割の収入見込額を控除した額として自治省令で定めるところにより算定した額は、次の各号に掲げる地方公共団体の種類に応じ、当該各号に定める方法によって算定した額とする。
-
一
都道府県
次の算式により算定した額とする。
算式
A+B×-C×
B×又はC×に千円未満の端数があるときは、その端数を切り捨てる。
算式の符号
A
地方自治法等の規定に基づく地方公共団体の報告に関する総理府令(昭和28年総理府令第32号)に基づき調製された平成8年度の市町村税課税状況等の調(以下「平成8年度の市町村税課税状況調」という。)第61表(平成8年度特別減税に関する調)の表側「普通徴収」のうち「道府県民税分」、表頭「特別減税額」欄に係る当該都道府県内の市町村(特別区を含む。以下同じ。)ごとの額の合計額
B
平成8年度の市町村税課税状況調第61表の表側「特別徴収」のうち「道府県民税分」、表頭「特別減税の対象となる所得割額」欄に係る当該都道府県内の市町村ごとの額の合計額
C
平成8年度の市町村税課税状況調第61表の表側「特別徴収」のうち「道府県民税分」、表頭「特別減税後の所得割額」欄に係る当該都道府県内の市町村ごとの額の合計額
-
二
市町村
次の算式により算定した額とする。
算式
A+B×-C×
B×又はC×に千円未満の端数があるときは、その端数を切り捨てる。
算式の符号
A
平成8年度の市町村税課税状況調第61表の表側「普通徴収」のうち「市町村民税分」、表頭「特別減税額」欄に係る当該市町村の額
B
平成8年度の市町村税課税状況調第61表の表側「特別徴収」のうち「市町村民税分」、表頭「特別減税の対象となる所得割額」欄に係る当該市町村の額
C
平成8年度の市町村税課税状況調第61表の表側「特別徴収」のうち「市町村民税分」、表頭「特別減税後の所得割額」欄に係る当該市町村の額
附 則
この省令は、公布の日から施行する。
UEsDBBQAAgAIAI4F+VjpmpM4pw0AAGgPAAAXAAAASDA4RjA0MzAxMDAwMDI3LTAwMS5qcGeNVHs80/v//+wSwnGXS2TGnFxmm9tsosMks1xCi6GabVg2m20YXXRTicolh0QXl4QouSSEbq6lm2uKuZTcuihdCL/lVOf8vr/f4zy+r8/nj9fl+Xxd3p/367PUuzQEqG8QMoMAgEg0AqSAv2VpClB0jKCFRgMgACq26WLXECQrRCDg4lGoML4plc4JZJjSOGyUkMpFYUzRKGDdeiGXSgtlCGCBjGBmmC38bW0DHMak28K3WrqiXbkERgjTOYbH8Ipx86bFhNJwdPh6O9g6IV7I5rIZAipMyGaF8fFCW/hycrxY/+5GwWHLEEGoLdz+ewDm4+oBI3B4DJilqTmShsZgYFZWphgLSysrjAnMDI0xQ6HFrxUSY4G3tMKbYWE/BC6uxqMH4T0dnX7UElu28B9DRUVFmUaZm3J4wSgMDof7nsPMDClGIPnRYQKqEBnG1/uZwZHBp/GYXAGTEwb7blMDORECWzj85whsrqvrr8T/72mx2aifaL7AkxH072i+dzSXgfJk8DkRPBpDDNf7R6l/p/4E0mm/cNwIHmt5TjoNxWAx2IwwAV+MxSxjxZ3jHTm0iO9eoqMtXOwxpTPpeEcMBo0lOGAxaJw1BrMB60DAWeAIWIKZvaOFwwaCw08uMYwvoIbRGD+5zL+5Vv/KxRN4DKqAw/PmcFi2cFcmjcfhc4IEt0thWzk8+vfviv5+/D86ZPCYkQy6E4/Dhi2fH575j7oREeKiNEwQ3cwCY4HEULGWSAtzrAXSGoOjIjFmFlZYSyyNSkXT4T/I9H8MvEwOQmMsLDCWlkg6zgqHtMCi6UhrLAOLZFAxuEC0lbkVLogKR4nbodPwtL/6/nE1vBjhPzQW027s+smXCafHsvavQ/3wwP7S/kKh/hcb9R8366dLfF2/q7/2RGz82jRGmHi9eOI9WpoGnD1COAIOP4TDhZmbogFrB6IrFLq8zfJaIAoAWY3YqAUGALD4WY4hlmMK34Z04luutwpRFoEWkj5Rk0tvALnlPQPojeI4aKkfOASA/nsB/y2QX/IzthwG/TPyX8pSI6AoBewEzCEgRQCsCIIogpbuAvu+NwaAIaBfPy5pYKWkFGSFBBQEAv5DFABAQtwAFCwPlVkOgiHQFRKSIClgpaKSsoqqNJyxyqpKDZuuLuzF+WridbdYO2P0vOmIOIOgpiOZGor/J+PSM0BWXBusCFEE1gP864dOjB/b6vaQsgSQHUpDbfFVOX3nV/1WUZOcUKPnMZx1JI5k4jTRNOjdyafteOBBtA/0igtKP8Az465XgXlMh+XZevw5+3a89vwZJLSw8lhRUomwXm5f6GwZrAoS1rzGOGHCePWD1KAap+J7YVNlrSYa7SvQh9c9ySAdlb4H+D4Pw1hj9kpumEvmRDCf8t3YCxXl+9T0k1YdSCboirxOtU/ZmDpGap5PIo8AngePKff3NbZVgkzuw9gIl1tHbrutE5nN++DDpz69esw9fnFC+Wb/Hck+Ur1Zf0jZFkr21VTtoAJL19LA+/m77RRlrwxJxtiRzBObz7ZA2hNPoiTW+kOUThpJgQpM5AvGk2vnJZVeuGa9XgLqlVOmpg/0NHmvqq9k4Q+TX4+UdkxMNucuaM6ac3ZqsKorqffqcgxbnNvl1ORldt1S6HcnX1JQA4tk3uTqXIbkbe9SPDckMc/VlAc2x3SnbjXm75yzFCwqMULPf9724Bpp7PJZxYTktlV2fVsqzWUIr3Me6JtKwlgZRJJi4ENmBhewT9plMqr5FvCZvXtWxnMPtf7o/I4O6vFg91RYT+vw6MRK/crKD5UVNQ2pQzt3H9HdPAqfX1U38DR8amazD7APfgANcRP5g/Z00mb3CRLmcsy/wQbDIPYiiUFf+7y2yZJge/YBnksB5lHAFhtim4qJtFWq7CWrpqIzeIR0bksbeVaXsOOUXodCc6IK/EPSCDCtgDMF2LPZI8bI0pJs6cKMry6bklvY5LsvRMCFU9kqtdTxw9e6x64+z1DqTzhZ7HGeAMiAEJ9r+6Z0BFrpYJH02dyTl+lzIm1E3dY/c27qFGPIiEW9Y+hotebTEu/mdE8HC6eig7dud7sw09r8wnoJsN7Ihb8nvYWQRTruvjIF2cdvxsAyfa+w2/0jU90LjlaZpf5x37nTefTlxhT1laNrrLKgRZqtyuW6jjcq9UEGWaKZlnh1TOKlDqFmwvnaNH9OU4FXv40fDmYdPxrQoHz0SfhnrclQ10pNerclw4CFcUi7/ETK/0yzC1UyAY5OVDpfpmk/mrVDp8ZTwt170Kc09GZy58D4x5H8Lm+3qi1kz70TLapl5WPpaC/Dz0q1a/T88y25NY92aTZDnTKhE5m+bk08St5Ii0mppNI2lX7V2QAbcgou4roEU0juvPpVW4fTWxFwLIktZ/i8xfBic1HeZt9clw1BF2/tbHWruNZ1UaEVCzEJlCOo5ddffusSP5ty8WX27SqjUE7JboKBbygpcp6uH+lyQ883voOVZJhV59OOkKzHaiUmK1zeeS0avlYDeJ905Kqln+8sXL5otD31NutFdplURroGYvNqjYr0ptZUHQMjtUaYkVxAj03mAVmKaL1G3NDO2/7WVLz/2vfrimJlbVwb24ybc2Ldznx6cKbfMzNyi2xav0HUm9GKuP4Ij2Sbnvo86S7pwTivD69ZlJDK+8+z04rdnNVWDHuGdJ5lngYaNX9394pwayCXGUUmXwncEhAAZck4ushIMRxvadEIw5l5UwiOw+YNxymzBZn5lFSbCbKx9Z2H6DuJ6ne10hqrxbvkL7Ofa7rilwqFnCvaVWf8PEtNtcds2oXS1db1Z4bldG1SAThNQgsMSZreT20hSs1Xd4C19j583Qx5t+iFfPktwnQJONMeOx3c2GD458wiPj32wcuGT+Wi7afao2O1SQ2vZgbnfd+h2hh1DSfyBz9EcxYuf1F7aTawvdnz7de664vdu+WeL/rbVn058+XqEjBZUj5+Lgf7+PqLc9XF5h27SueEC6h67Df5vNjMjw3VqI/y+1/V9SQt1nZEx75bBHeKhG6e2XZE6YOtMBc3afoX60eqadJQUIbSysa7WpnchLUOjZBnJiLcw+Ag88YPXFPJIu4eGtOzN77rZWEZ7UlWbrCzaPi4UjpD2CpsI99WyfIt7hwxONiruj+hj/Zp73Ou7RWwKBwhOvCZV5qdEsoqyjvsRyB3GmDnb0Mw5cZ5l/4YzuLE2TjCyFtICP8SL7ffkLqH6n8HSTtCZEGNciQFOeOOoQni6tnUGsoEeXSqkhFKXjwR1bdWBb6vZE1hTWWloLS+b+egjH44UaVol2FserkOwDXUTDeE3CAqIDs8v9JUTYBbdVz5gst6nYdvPaYQAoxidnJfuD+br91V/pjIGTtUmJbT86z9/jVlZv/x0WrJxwbE3Ev0FpkNaYEgIskzpjFBIh+1/5l+gFyN/41m3on7XRmH75EC/K5uujjd28xU7dnlrlZoErgdkdL/FBu1kjuQ1bkm8MTMCqmUfI3so62bPEgmoPi5PqaftlbMpP2c26vOayXbzvUXUlLpofqBvakNPpyaLr1tAYkSGY6mgd9u8JurRe2hWw1oq49r3JgJQya4PzwNzifZJ74zBeonMHON+A0LmzUWFTjXQeffmV0pOumMDJyYhBSKanV0q6hLgLIX1lCAJ7m35LJQQ0aOxyH0qnXDGgIHVkth4VdIIHWH0GkFMQ2hf/vBu288+d9M4xwzYejeU0p2qrrUOCefwE37fWJPk1cdHfF0inxU5PVCMsPrUMitQZ0o7feRY+XadWBtihN5lj2b1vNmRfRB7YqHeff1VOB+SHTnMCKEZcMLVXSoUveLd8ApTxz9OPCIUkapONhG08w9Kqt+jZSiu1YC1VgNnr/UPAmMq806Bn+xr38ucbCxWn1j+Wp5zqz6TdbAmRo9y4iSiYkbTIxdTm3rGgBdVOL8zn4gqet4CCUv1ePm1KEbeQYpX+aArMPQgTBHlGLn7ZVrLf22VFKOPWkzkizFj0BYV4yK3l9dq3E6SfIeZbhi4E5A3pNgWvhYnmef0puZdDVVuGaci2SyjHUTWOEItVoNMIkw6M00vN49Pp4N2866pXS18xTd6Fz5QEcyNi4HEkzUXx3xWriprL2pzWrjSx2NKe2Zk+rrGvJXvr+2PaT2/OtW6zToqQu4/LP2L/cNy+tTLVLjLaw1gk7tMIOp++5bZaZIwzWFn33OlY8KqC8Iz3baeGWOd2zBvuip61N+cuXDT9kPLjqPfaR39z7blMbovXq3rKpgK9YmxxthTz18KusCVSZn/xUPHvoiwonwypJ/eaz4zsXO3XrbKufDJ6UC2NA/9F+ngOUjioV7o8jr0fPoDDttnyFBTqgxX6EbjytS6DTx3nHIZET70SHr+keT8cX9g/V7sBaEgntPYeXdrpFsROve3qTuvlEJ08MlF4xJSj12JUrjpE1EwaXxM1lss+twZ12/oNV+ic7cQzFZ0KTNWbIpk7GfIymDt7bW1xS/hS6q223WW/y2p2bhwfS5g42yOl+VRWs55P6vHfM5semcmvLF2a9RS0CC+F/3zvpht8VXevfbG7tG27Z/zp3/8vlJ6mjBQuFCw/wYf1947Mzvjd1vjuoIs73mohcmKA1Rg+/Xz0TBPmdPo96eC10XBjkril3q+x9QSwMEFAACAAgAjgX5WIr41uw3CwAASw0AABcAAABIMDhGMDQzMDEwMDAwMjctMDAyLmpwZ51UCzjT+xv/bcOQsHSEqJlJ0Wxjm23HcneQVSRGp5jth2GXZmzpRkIXJXIpuRyn1OlyJEIllyRSOCXRxfWUyl1HkYN2RlT/8/8/5znP/92ePd/3837e23ff95U+lfYAWg4STgAAODsbA4rAV5EOAgj7cFbITgACyMl0tgzqgWUGiUQCKhbLCzNlsvn+oCmLz8VKmAIs3hSHBSytJAImKwQUIf3BQA6Phhopq0QhOWwayotIx9EFdmAQxylSCG6O3ODBigxhUdgoq3VISwlVwhVwQRETKeGG8sKoEhpqLjhVdp6FsSjkHEUUQkPZzBqQDPompB1fCCKJpuYYFg6PR5JIpngCkUTCr0Wa4fBmWJzsS8LgCVQiiWpmgZwXlCybkB1Adbd3nM8l02io+abEYrGp2NyULwzE4ikUymwMMzOMjIEJ28kTMSUYXpjBQgR7MIwl5AhEHD4POasz/fnhIhoKtdACV0Cnfwn8P2+Ly8UusMNE7mDAP7PDPHYKQKw7GMYPF7JAGd3gm1T/7LpAZLO+8AThwtC5PtksLBgKckGeKEzGxc9xZZVT7fms8FnU2Z6GkiGmbA6bak9xtLUxJxDxOAoZj3ewsLEh2DgQzS3wODMCwc7WccHXmRcmYvJY4IIv56sv4R99qXZCkCniCz34/FAais5hCflh/ABRdT7Siy9kz/6vuNnrn68QFHIiQLajkM9Fzt0flfNN3vBwWVJCAJtpziLiMHgmBYchUMz9MWQWiYIhs1n+ODKJySaDIGremf1Nw3POAUwSiMMRyBgSmU3BEMxAfwwzAM/GMMmgGcWCSWZbWBBQWFk5bBaV9bnu+aexGdwxfwrlrHtTmth75NSbzGhL7DyC/Hz6zML+hzf2by9rAZI919njlzmRKV8mDeTJxksomyPpEOC0KYgv4ocF8QVIc1McQLZ1psvJzU2zmi7EB4AtN/xBFwoAUNlnzmY4Z1Of7ll56F5pvQRL8CfAGeIB6TCgOjdnALtKZodIXwAHAMi/F+hXgX2RBducGfKt5V+KtApAKALBgDkMggCgCAgMAZHWzBUGyKJBvm4uZZgSXFFOXmER5Bvws6gDgIKsApi8stLiOQAKkxHhEEVACbFEWWPpdxZkfdKydC3JU4q3zhZQsySw1EmbikcZoD3YhrGrao3iMxD/FVT6HFCR5YciYAjACqg8Bj9YHql5zUS3vRXN4/KccnfF7P8gd8Y2WtnMMdfn7uEWlWt97oYbGHHMGHVrAI7S3JEQaKkU3hxS+25ACgSHxvYeaZps5aW/35NyM+GnAZoo2+mXIyHgOddffHLQ43vuCO1qngUQ7KOqxqOcz4RuoPcVpePOuTPjcj2Itxu2Fl/ehW0e3p/Gq9xIz3xWBsnx8VlcmN9Ben76vrjw/Uydw934+CM2BMqnF26EwjWnGvbiXEqFuoyORa5+7lqwJWoGTSqLmzi1LZ6nyy61HGvzMMpkQ4djLFx1ki4TKU1uE7oZufmbVSPxyAbnU3IoxvMbWXfkFR3khRoCCJtcK9RL7yarwj0njmo8zk4ZholClRuSyMGdVT8zMZBnG67X5YUTrsUVGFgpfJe85eiO2O6r3czhxCLa9cGh7qD1t6dfV1eeKTP2jHHX6n5QKD7CPqt0r/4H9WlOkldKL9bccNkb4zGtCN4KeEJiQXSa6sTY97mLh/gtrfLbgoa76Bi45uuLM0d88ot6XbIEiDP4Xx3ESFvS9PllPK81YuKmJeonyYjDiZZyUSitat0DvRI812Jn+voB91sR2vEaG7m3ZjII60aYSr+P6fxZcJoJCA0atFLSMWLJJstu+ZjrZ2+xrm2bHjUpiuomazWhU+Uysmwcsm16E07cI0MIJw4RKJBYHcYoUss7SlOAfKNduyO7YdRwyfGHK/L0NEoipiP77jhUiS+dz25q8nh6kYgbSFPLHx8u3+AJQ/eEGvsGHbKUbzVtfrb/tPVKCmXz6WB7tq6tXVKP8Pifje0xIyWtA5+qhozcglsrH++xblGGDlaaNKr7lTBGOI29u1uLMzNsvOkkYWOs0rGbvirRD7YuuemY2xCcklb+0bmmO6g2aR1ddfWo/5P8453pEakH+t1q4npenJZ/TXkeIJfq6rly+5OC/a1p291TmMF3sYGRyPbJzesRnPvDE/LRL/W3/QiHVAkI8NwO7o8TapdUJ943JYfcu1jVf5xLFKxHuF61rXMeA825tcbOS+qu3x93bECpdNcnG43rGxB+r25CTLotT9Lk2SVMO1rUZN9pu1fnPOSDMYy5OWMHIk7C7OXzfFO3bnuU4L7qwrZToYzgJcxN+jiWW9HSFv86aDXsoYmAhnO9D/uDwcPafFDQyKWKrYMJwOgVVp7fataDHNxJxTqTk9cvehkUrApEw6+n9KX09d5tcIg4Ug96hd0yHeHZld6abYBYXNhhSGAF8+SmNKwusx92xBteUlG+Eqn5ori4/8luvzFCY2ds6v2+GwlEj3L1rQ/Pb2BkQS//oXF+bXIChDHMpgR63NwbvC41y1jc1n9UQ2789h/+hTxtUZw3p9PTLfZgTGVbOi1zyrTw7MGCC+QNGKXhnTyXAKtL59FkRYFeg2wyYFF//7G7n6NU8S47z6ZnIFe8VCOR8DD98Hhn0yKlOEWJgvnRQlXzKBYtp/6YgtpN8FYlL6/r3U7+zNqP/6+mVzd1Yypw1Gh0y9QL7j769LF1rr5pUiApwiv7k/fe0Y1p/DsWp6fPWI48Xgnvevfm+Fgl9f2+9527Xnf1tCvXdjMpLqJJtLEaOnoNec2J7pfWnh6r1RX8nIxg6kJO9drcRYBaUFHUG1rWyd9gFpCq6lwXUSz7ww/JJ6MOFij2KkQl7zdPgKDjV2khY6CEl1DgZek1W018othSpR0OO4SVW1aWKho8sRXcgjZ7rlOSi6/sVNc+emqboS186cvda57rQwsvehv3BmcIOBwVw3dkRXeklp8qIGTsJ1/5Pv4Cml+T1dzmXmoEXjLxKX0fVlFvnbtUPugD/cmvl/LCxx94fvQ2OOyUt/nZ+unykx9h0U4tN5z07jtF84TpjQkeBbBFku7d4MHsO17yaecuZPUkaDIHTQ1ttg86vXxVodxmpLOjJy+0BKuTUo1Wa0AbDx+y9eAvvqiK1VZcuiyzm6GYNBDP/cA4V9J1tlGvcJebw/rVejntOo96uCGXl9ZUH+cIIn/mUyHb3RlxTYNlccw1iT30453Fyq5O0E7DPjPhAW+isfn+ZXZVAl3Fin78tJ8e6lNQghTIXD5UdW0FLHpZ55oc/kZVKdA0XDsjfJsDfShRlaEdjlYJsLO+jYicsZg91zVjqgSoqbvmQ309XZMdT7vyt2l0+6jJ3r4+6wKp5hG9wjT7VLP8eAPCZLGzo+2FKdpgn4bEB0kSJduUbo8/8ED3VolbodXqjxv9RlIkt19/SjF6wK54JLZ9W09OlUvJpeTJFl7U72po5uzCI2sHpPiZzS08MwSLIlt47QIzgX7O3cDIzVc7f8pS1ckOPZhs5LJiJt3HwiQo60RGxbUrr0i1Zyh4l3OKj189UWk8NvRkoPnApCzUWQsdXLz+8CsbweUroc2OaRNvx4pYY8tv2noV08yuuLxtfh1rjSMMLG/flBFJvKCmsMuayVKXTxRr/wZ7Nko0bJUC/YPF5YfLPzzxZRgVwS87SYHKlXW+0ZXakyvkcPtebYze1Lmc/+L7/kMzWRUXf5tqa6uc8p3uii7L/3l7dRnYb9DicGjIZnBkZI9v/r5HXT1Wwx3D8Df7ZLOxTmFyt+X25xH7WrwGy4h/Xi3fE9mWR5vYe3Bf6SfKey9o/ceV0md/AVBLAQI/AxQAAgAIAI4F+VjpmpM4pw0AAGgPAAAXAAAAAAAAAAAAAACkgQAAAABIMDhGMDQzMDEwMDAwMjctMDAxLmpwZ1BLAQI/AxQAAgAIAI4F+ViK+NbsNwsAAEsNAAAXAAAAAAAAAAAAAACkgdwNAABIMDhGMDQzMDEwMDAwMjctMDAyLmpwZ1BLBQYAAAAAAgACAIoAAABIGQAAAAA=